Meissner Effect
   HOME

TheInfoList



OR:

The Meissner effect (or Meissner–Ochsenfeld effect) is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is cooled below the critical temperature. This expulsion will repel a nearby magnet. The German physicists
Walther Meissner Fritz Walther Meissner (German: ''Meißner'') (16 December 1882 – 16 November 1974) was a German technical physicist. Meissner was born in Berlin to Waldemar Meissner and Johanna Greger. He studied mechanical engineering and physics at t ...
and
Robert Ochsenfeld Robert Ochsenfeld (18 May 1901 – 5 December 1993) was a German physicist. In 1933 he discovered together with Walther Meissner the Meisner-Ochsenfeld effect. Born in Helberhausen, Germany, Ochsenfeld studied physics at the Philipps Universi ...
discovered this phenomenon in 1933 by measuring the magnetic field distribution outside superconducting tin and lead samples. The samples, in the presence of an applied magnetic field, were cooled below their superconducting transition temperature, whereupon the samples cancelled nearly all interior magnetic fields. They detected this effect only indirectly because the magnetic flux is conserved by a superconductor: when the interior field decreases, the exterior field increases. The experiment demonstrated for the first time that superconductors were more than just perfect conductors and provided a uniquely defining property of the superconductor state. The ability for the expulsion effect is determined by the nature of equilibrium formed by the neutralization within the unit cell of a superconductor. A superconductor with little or no magnetic field within it is said to be in the Meissner state. The Meissner state breaks down when the applied magnetic field is too strong. Superconductors can be divided into two classes according to how this breakdown occurs. In
type-I superconductor The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided int ...
s, superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value ''Hc''. Depending on the geometry of the sample, one may obtain an intermediate state consisting of a baroque pattern of regions of normal material carrying a magnetic field mixed with regions of superconducting material containing no field. In
type-II superconductor In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the ...
s, raising the applied field past a critical value ''H''''c''1 leads to a mixed state (also known as the vortex state) in which an increasing amount of magnetic flux penetrates the material, but there remains no resistance to the electric current as long as the current is not too large. At a second critical field strength ''H''''c''2, superconductivity is destroyed. The mixed state is caused by vortices in the electronic superfluid, sometimes called
fluxon In physics, a fluxon is a quantum of electromagnetic flux. The term may have any of several related meanings. Superconductivity In the context of superconductivity, in type II superconductors fluxons (also known as Abrikosov vortices) can form ...
s because the flux carried by these vortices is quantized. Most pure
elemental An elemental is a mythic being that is described in occult and alchemical works from around the time of the European Renaissance, and particularly elaborated in the 16th century works of Paracelsus. According to Paracelsus and his subsequent fo ...
superconductors, except niobium and carbon nanotubes, are type I, while almost all impure and compound superconductors are type II.


Explanation

The Meissner effect was given a phenomenological explanation by the brothers
Fritz Fritz originated as a German nickname for Friedrich, or Frederick (''Der Alte Fritz'', and ''Stary Fryc'' were common nicknames for King Frederick II of Prussia and Frederick III, German Emperor) as well as for similar names including Fridolin a ...
and
Heinz London Heinz London (Bonn, Germany 7 November 1907 – 3 August 1970) was a German-British physicist. Together with his brother Fritz London he was a pioneer in the field of superconductivity. Biography London was born in Bonn in a liberal Jewish-Ge ...
, who showed that the electromagnetic free energy in a superconductor is minimized provided : \nabla^2\mathbf = \lambda^ \mathbf\, where H is the magnetic field and λ is the
London penetration depth In superconductors, the London penetration depth (usually denoted as \lambda or \lambda_L) characterizes the distance to which a magnetic field penetrates into a superconductor and becomes equal to e^ times that of the magnetic field at the surface ...
. This equation, known as the
London equation The London equations, developed by brothers Fritz and Heinz London in 1935, are constitutive relations for a superconductor relating its superconducting current to electromagnetic fields in and around it. Whereas Ohm's law is the simplest con ...
, predicts that the magnetic field in a superconductor decays exponentially from whatever value it possesses at the surface. This exclusion of magnetic field is a manifestation of the
superdiamagnetism Superdiamagnetism (or perfect diamagnetism) is a phenomenon occurring in certain materials at low temperatures, characterised by the complete absence of magnetic permeability (i.e. a volume magnetic susceptibility \chi_ = −1) and the exclusion ...
emerged during the phase transition from conductor to superconductor, for example by reducing the temperature below critical temperature. In a weak applied field (less than the critical field that breaks down the superconducting phase), a superconductor expels nearly all magnetic flux by setting up electric currents near its surface, as the magnetic field H induces magnetization M within the London penetration depth from the surface. These surface currents shield the internal bulk of the superconductor from the external applied field. As the field expulsion, or cancellation, does not change with time, the currents producing this effect (called
persistent current In physics, persistent current refers to a perpetual electric current, not requiring an external power source. Such a current is impossible in normal electrical devices, since all commonly-used conductors have a non-zero resistance, and this resis ...
s or screening currents) do not decay with time. Near the surface, within the
London penetration depth In superconductors, the London penetration depth (usually denoted as \lambda or \lambda_L) characterizes the distance to which a magnetic field penetrates into a superconductor and becomes equal to e^ times that of the magnetic field at the surface ...
, the magnetic field is not completely canceled. Each superconducting material has its own characteristic penetration depth. Any perfect conductor will prevent any change to magnetic flux passing through its surface due to ordinary electromagnetic induction at zero resistance. However, the Meissner effect is distinct from this: when an ordinary conductor is cooled so that it makes the transition to a superconducting state in the presence of a constant applied magnetic field, the magnetic flux is expelled during the transition. This effect cannot be explained by infinite conductivity, but only by the London equation. The placement and subsequent levitation of a magnet above an already superconducting material do not demonstrate the Meissner effect, while an initially stationary magnet later being repelled by a superconductor as it is cooled below its critical
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
does. The persisting currents that exist in the superconductor to expel the magnetic field is commonly misconceived as a result of Lenz's Law or Faraday's Law. A reason this is not the case is that no change in flux was made to induce the current. Another explanation is that since the superconductor experiences zero resistance, there cannot be an induced emf in the superconductor. The persisting current therefore is not a result of Faraday's Law.


Perfect diamagnetism

Superconductors in the Meissner state exhibit perfect diamagnetism, or
superdiamagnetism Superdiamagnetism (or perfect diamagnetism) is a phenomenon occurring in certain materials at low temperatures, characterised by the complete absence of magnetic permeability (i.e. a volume magnetic susceptibility \chi_ = −1) and the exclusion ...
, meaning that the total magnetic field is very close to zero deep inside them (many penetration depths from the surface). This means that their volume magnetic susceptibility is \chi_ = −1. Diamagnetics are defined by the generation of a spontaneous magnetization of a material which directly opposes the direction of an applied field. However, the fundamental origins of diamagnetism in superconductors and normal materials are very different. In normal materials diamagnetism arises as a direct result of the orbital spin of electrons about the nuclei of an atom induced electromagnetically by the application of an applied field. In superconductors the illusion of perfect diamagnetism arises from persistent screening currents which flow to oppose the applied field (the Meissner effect); not solely the orbital spin.


Consequences

The discovery of the Meissner effect led to the phenomenological theory of superconductivity by
Fritz Fritz originated as a German nickname for Friedrich, or Frederick (''Der Alte Fritz'', and ''Stary Fryc'' were common nicknames for King Frederick II of Prussia and Frederick III, German Emperor) as well as for similar names including Fridolin a ...
and
Heinz London Heinz London (Bonn, Germany 7 November 1907 – 3 August 1970) was a German-British physicist. Together with his brother Fritz London he was a pioneer in the field of superconductivity. Biography London was born in Bonn in a liberal Jewish-Ge ...
in 1935. This theory explained resistanceless transport and the Meissner effect, and allowed the first theoretical predictions for superconductivity to be made. However, this theory only explained experimental observations—it did not allow the microscopic origins of the superconducting properties to be identified. This was done successfully by the
BCS theory BCS theory or Bardeen–Cooper–Schrieffer theory (named after John Bardeen, Leon Cooper, and John Robert Schrieffer) is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes sup ...
in 1957, from which the penetration depth and the Meissner effect result. However, some physicists argue that BCS theory does not explain the Meissner effect. Image:Tin_4.2K_Electromagnet.jpg, A tin cylinder—in a Dewar flask filled with liquid helium—has been placed between the poles of an electromagnet. The magnetic field is about 8
millitesla The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre. The unit was announced during the General Conferenc ...
(80 G). Image:Tin_80gauss_4.2K.jpg, ''T'' = 4.2 K, B = 8 mT (80 G). Tin is in the normally conducting state. The compass needles indicate that magnetic flux permeates the cylinder. Image:Tin_80gauss_1.6K.jpg, The cylinder has been cooled from 4.2 K to 1.6 K. The current in the electromagnet has been kept constant, but the tin became superconducting at about 3 K. Magnetic flux has been expelled from the cylinder (the Meissner effect).


Paradigm for the Higgs mechanism

The Meissner superconductivity effect serves as an important paradigm for the generation mechanism of a mass ''M'' (i.e. a reciprocal ''range'', \lambda_M: = h/(M c) where ''h'' is the
Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivale ...
and ''c'' is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
) for a
gauge field In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations ( Lie group ...
. In fact, this analogy is an abelian example for the
Higgs mechanism In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other be ...
, which generates the masses of the
electroweak In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
and gauge particles in
high-energy physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) a ...
. The length \lambda_M is identical with the
London penetration depth In superconductors, the London penetration depth (usually denoted as \lambda or \lambda_L) characterizes the distance to which a magnetic field penetrates into a superconductor and becomes equal to e^ times that of the magnetic field at the surface ...
in the theory of superconductivity.


See also

*
Superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
*
Type-I superconductor The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided int ...
*
Type-II superconductor In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the ...
*
Flux pinning Flux pinning is a phenomenon that occurs when flux vortices in a type-II superconductor are prevented from moving within the bulk of the superconductor, so that the magnetic field lines are "pinned" to those locations. The superconductor must be a ...


References


Further reading

* * By the man who explained the Meissner effect. pp. 34–37 gives a technical discussion of the Meissner effect for a superconducting sphere. * pp. 486–489 gives a simple mathematical discussion of the surface currents responsible for the Meissner effect, in the case of a long magnet levitated above a superconducting plane. * A good technical reference.


External links


Maglev Trains
Audio slideshow from the National High Magnetic Field Laboratory discusses magnetic levitation, the Meissner Effect, magnetic flux trapping and superconductivity.
Meissner Effect (Science from scratch)
Short video from Imperial College London about the Meissner effect and levitating trains of the future.

Video about Type 1 Superconductors: ''R'' = 0/Transition temperatures/B is a state variable/Meissner effect/Energy gap (Giaever)/BCS model.

{{DEFAULTSORT:Meissner Effect Magnetic levitation Quantum magnetism Superconductivity